Keywords
Structure-from-Motion, Unmanned Aerial Vehicles, iterative inspection, automated inspection, multi-scale, view-planning, unsupervised machine learning, autonomous flight, iterative optimization
Abstract
Unsupervised machine learning algorithms (clustering, genetic, and principal component analysis) automate Unmanned Aerial Vehicle (UAV) missions as well as the creation and refinement of iterative 3D photogrammetric models with a next best view (NBV) approach. The novel approach uses Structure-from-Motion (SfM) to achieve convergence to a specified orthomosaic resolution by identifying edges in the point cloud and planning cameras that “view” the holes identified by edges without requiring an initial model. This iterative UAV photogrammetric method successfully runs in various Microsoft AirSim environments. Simulated ground sampling distance (GSD) of models reaches as low as 3.4 cm per pixel, and generally, successive iterations improve resolution. Besides analogous application in simulated environments, a field study of a retired municipal water tank illustrates the practical application and advantages of automated UAV iterative inspection of infrastructure using 63% fewer photographs than a comparable manual flight with analogous density point clouds obtaining a GSD of less than 3 cm per pixel. Each iteration qualitatively increases resolution according to a logarithmic regression, reduces holes in models, and adds details to model edges.
Original Publication Citation
https://www.mdpi.com/2072-4292/12/13/2169/htm
BYU ScholarsArchive Citation
Arce, Samuel; Vernon, Cory; Hammond, Joshua; Newell, Valerie; Janson, Joseph; Franke, Kevin; and Hedengren, John, "Automated 3D Reconstruction Using Optimized View-Planning Algorithms for Iterative Development of Structure-from-Motion Models" (2020). Faculty Publications. 6180.
https://scholarsarchive.byu.edu/facpub/6180
Document Type
Peer-Reviewed Article
Publication Date
2020-07-07
Permanent URL
http://hdl.lib.byu.edu/1877/8909
Publisher
MDPI
Language
English
College
Ira A. Fulton College of Engineering
Department
Chemical Engineering
Copyright Status
Open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright Use Information
https://lib.byu.edu/about/copyright/