Presenter/Author Information

Meiling Sheng, Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Nanjing, China;State Key Laboratory Cultivation Base of Geographical Environment Evolution (Jiangsu Province), Nanjing, China;Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, China;Follow
Junzhi Liu, Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Nanjing, China;State Key Laboratory Cultivation Base of Geographical Environment Evolution (Jiangsu Province), Nanjing, China;Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, China;
A-Xing Zhu, Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Nanjing, China;State Key Laboratory Cultivation Base of Geographical Environment Evolution (Jiangsu Province), Nanjing, China;Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, China;Department of Geography, University of Wisconsin-Madison, Madison, USA;State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, CAS,Beijing, China
Liming Zhu, Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Nanjing, China;State Key Laboratory Cultivation Base of Geographical Environment Evolution (Jiangsu Province), Nanjing, China;Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, China;

Keywords

APSIM, GLUE, DREAM, maize

Start Date

27-6-2018 2:00 PM

End Date

27-6-2018 3:20 PM

Abstract

Process-based crop models are popular scientific tools to study the impacts of environment, variety and management decisions on crop growth. Some cultivar parameters in crop models cannot be measured directly and need to be estimated. In this research, two Bayesian methods, namely the generalized likelihood uncertainty estimation (GLUE) and Differential Evolution Adaptive Metropolis (DREAM) algorithm, were used to estimate the parameters of the maize module of the Agricultural Productions Systems sIMulator (APSIM-Maize) for the first time. Six cultivar parameters of APSIM-Maize were estimated using GLUE and DREAM, respectively. Both the GLUE and DREAM methods were able to give accurate simulations of yield in the theoretical evaluation. But in the real-world evaluation, the GLUE method performed better than DREAM method in both the calibration and validation period. The posterior density distributions of variety parameters obtained by DREAM were more sharp and narrow than those obtained by GLUE, and the standard deviations were much smaller. For the simulated yield uncertainty, the 95% confidence intervals calculated by GLUE were wider than DREAM method. The performance of DREAM was not stable. Using DREAM method, some estimated parameters were close to the initially defined “true parameter values”. But some other parameters (e.g. photoperiod_slope) had very large biases to “true parameter value”. For the GLUE method, all estimated parameters had relative stable biases to “true parameter value”. These results suggested that the GLUE method is more suitable for estimating varieties parameters of APSIM-Maize than the DREAM method.

Stream and Session

F3: Modelling and Decision Making Under Uncertainty

Share

COinS
 
Jun 27th, 2:00 PM Jun 27th, 3:20 PM

Comparison of the GLUE and DREAM methods for estimating variety parameters for a maize crop modelComparison of the GLUE and DREAM methods for estimating cultivar parameters for a maize crop model

Process-based crop models are popular scientific tools to study the impacts of environment, variety and management decisions on crop growth. Some cultivar parameters in crop models cannot be measured directly and need to be estimated. In this research, two Bayesian methods, namely the generalized likelihood uncertainty estimation (GLUE) and Differential Evolution Adaptive Metropolis (DREAM) algorithm, were used to estimate the parameters of the maize module of the Agricultural Productions Systems sIMulator (APSIM-Maize) for the first time. Six cultivar parameters of APSIM-Maize were estimated using GLUE and DREAM, respectively. Both the GLUE and DREAM methods were able to give accurate simulations of yield in the theoretical evaluation. But in the real-world evaluation, the GLUE method performed better than DREAM method in both the calibration and validation period. The posterior density distributions of variety parameters obtained by DREAM were more sharp and narrow than those obtained by GLUE, and the standard deviations were much smaller. For the simulated yield uncertainty, the 95% confidence intervals calculated by GLUE were wider than DREAM method. The performance of DREAM was not stable. Using DREAM method, some estimated parameters were close to the initially defined “true parameter values”. But some other parameters (e.g. photoperiod_slope) had very large biases to “true parameter value”. For the GLUE method, all estimated parameters had relative stable biases to “true parameter value”. These results suggested that the GLUE method is more suitable for estimating varieties parameters of APSIM-Maize than the DREAM method.