Keywords

Simulation, Pollutants, Water quality, MEC and Ecopath model, Kamaishi Bay, Japan

Start Date

25-6-2018 9:00 AM

End Date

25-6-2018 10:20 AM

Abstract

A three dimensional Marine Environmental Committee (MEC) model was conducted to describe the specific circulation patterns of currents, temperature, and salinity driven by wind and tide forcing in Kamaishi Bay at Miyagi Prefecture in the Great East Japan. The major concern of this study is the diffusion of pollutants caused by 2011 Earthquake and Tsunami disaster impacts on marine ecosystem. In this study, we also simulate the changes of water quality and ecosystems structure from January 2009 to December 2012. The MEC model has been used to predict the distributions of various key water quality indicators and tide flow in the different layer of Kamaishi Bay. High correlation is obtained between simulation derived and measurement derived tidal characteristics. We also simulated the effects of breaking water effects on the tide, currents and integrating aquaculture and fisheries. The wind driven flow using mean seasonal wind forcing (NE, SE, and SW) creates different circulations over Kamaishi Bay. The current variability in shallow areas is influenced by the prevailing winds. Similarly, the temperature and salinity distribution of Kamaishi Bay waters is characterized by strong seasonal variations. The water quality is intensely affected by pollutants and has continually deteriorated due to increased discharges of domestic and industrial waste as well as an increased loading in anthropogenic contamination into the Bay. The results were found that measured and simulated contaminations of pollutants were under the environmental standards in Japan. Observed and simulated DO, T-N and T-P concentrations were not so large different from those before the disaster.

Stream and Session

Stream A: Advanced Methods and Approaches in Environmental Computing

Session-1: Towards More Interoperable, Reusable and Scalable Environmental Software

COinS
 
Jun 25th, 9:00 AM Jun 25th, 10:20 AM

Numerical Modeling on the Pollutant Effects in the Ecosystem of Kamaishi Bay (Japan) by Coupling MEC and ECOPATH Model

A three dimensional Marine Environmental Committee (MEC) model was conducted to describe the specific circulation patterns of currents, temperature, and salinity driven by wind and tide forcing in Kamaishi Bay at Miyagi Prefecture in the Great East Japan. The major concern of this study is the diffusion of pollutants caused by 2011 Earthquake and Tsunami disaster impacts on marine ecosystem. In this study, we also simulate the changes of water quality and ecosystems structure from January 2009 to December 2012. The MEC model has been used to predict the distributions of various key water quality indicators and tide flow in the different layer of Kamaishi Bay. High correlation is obtained between simulation derived and measurement derived tidal characteristics. We also simulated the effects of breaking water effects on the tide, currents and integrating aquaculture and fisheries. The wind driven flow using mean seasonal wind forcing (NE, SE, and SW) creates different circulations over Kamaishi Bay. The current variability in shallow areas is influenced by the prevailing winds. Similarly, the temperature and salinity distribution of Kamaishi Bay waters is characterized by strong seasonal variations. The water quality is intensely affected by pollutants and has continually deteriorated due to increased discharges of domestic and industrial waste as well as an increased loading in anthropogenic contamination into the Bay. The results were found that measured and simulated contaminations of pollutants were under the environmental standards in Japan. Observed and simulated DO, T-N and T-P concentrations were not so large different from those before the disaster.