Keywords
object modelling system, natural resource models, object oriented programming, simulation framework
Start Date
1-7-2004 12:00 AM
Abstract
Current challenges in natural resource management have created demand for integrated, flexible, and easily parameterized hydrologic models. Most of these monolithic models are not modular, thus modifications (e.g., changes in process representation) require considerable time, effort, and expense. In this paper, the feasibility and challenges of using the Object Modeling System (OMS) for natural resource model development will be explored. The OMS is a Java-based modeling framework that facilitates simulation model development, evaluation and deployment. In general, OMS consists of a library of science, control, and database modules and a means to assemble the selected modules into an application-specific modeling package. The framework is supported by data dictionary, data retrieval, GIS, graphical visualization, and statistical analysis utility modules. Specific features of OMS that will be examined (with respect to natural resource/hydrologic modeling) include: 1) how to reduce duplication of effort in natural resource modeling; 2) how to make natural resource models easier to build, apply, and evaluate; 3) how to facilitate long-term maintainability of existing and new natural resource models; and 4) how to improve the quality of natural resource model code and ensure credibility of model implementations.
Developing Natural Resource Models Using the Object Modeling System: Feasibility and Challenges
Current challenges in natural resource management have created demand for integrated, flexible, and easily parameterized hydrologic models. Most of these monolithic models are not modular, thus modifications (e.g., changes in process representation) require considerable time, effort, and expense. In this paper, the feasibility and challenges of using the Object Modeling System (OMS) for natural resource model development will be explored. The OMS is a Java-based modeling framework that facilitates simulation model development, evaluation and deployment. In general, OMS consists of a library of science, control, and database modules and a means to assemble the selected modules into an application-specific modeling package. The framework is supported by data dictionary, data retrieval, GIS, graphical visualization, and statistical analysis utility modules. Specific features of OMS that will be examined (with respect to natural resource/hydrologic modeling) include: 1) how to reduce duplication of effort in natural resource modeling; 2) how to make natural resource models easier to build, apply, and evaluate; 3) how to facilitate long-term maintainability of existing and new natural resource models; and 4) how to improve the quality of natural resource model code and ensure credibility of model implementations.