Keywords
particle swarm optimization, mapreduce, parallelization
Abstract
In optimization problems involving large amounts of data, such as web content, commercial transaction information, or bioinformatics data, individual function evaluations may take minutes or even hours. Particle Swarm Optimization (PSO) must be parallelized for such functions. However, large-scale parallel programs must communicate efficiently, balance work across all processors, and address problems such as failed nodes. We present MapReduce Particle Swarm Optimization (MRPSO), a PSO implementation based on the MapReduce parallel programming model. We describe MapReduce and show how PSO can be naturally expressed in this model, without explicitly addressing any of the details of parallelization. We present a benchmark function for evaluating MRPSO and note that MRPSO is not appropriate for optimizing easily evaluated functions. We demonstrate that MRPSO scales to 256 processors on moderately difficult problems and tolerates node failures.
Original Publication Citation
Andrew W. McNabb, Christopher K. Monson, and Kevin D. Seppi. "Parallel PSO Using MapReduce." In Proceedings of the IEEE Congress on Evolutionary Computation (CEC 27), Singapore.
BYU ScholarsArchive Citation
McNabb, Andrew; Monson, Christopher K.; and Seppi, Kevin, "Parallel PSO Using MapReduce" (2007). Faculty Publications. 947.
https://scholarsarchive.byu.edu/facpub/947
Document Type
Peer-Reviewed Article
Publication Date
2007-09-25
Permanent URL
http://hdl.lib.byu.edu/1877/2602
Publisher
IEEE
Language
English
College
Physical and Mathematical Sciences
Department
Computer Science
Copyright Status
© 2007 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
Copyright Use Information
http://lib.byu.edu/about/copyright/