Keywords
atomic force microscopy, AFM, planar bilayers, anesthesia, DPPC
Abstract
Atomic force microscopy (AFM) is a remarkable tool for assessing the structural properties of supported lipid planar bilayers under different physiological conditions. Previous work has shown that incorporation of anesthetics into artificial lipid bilayers results in domain formation [1], destruction of lipid aggregates and patches [2], anesthetic-lipid mixed micelle formation [2], and the development of interdigitated phases of reduced thickness compared to anesthetic-free bilayers [3]. In particular, these interdigitated phases are suspected to affect the structure and activity of membrane proteins, such as ion channels, and thus further research with proteinembedded bilayers exposed to anesthetics could reveal the mechanism responsible for disrupting action potentials. In this study, we inspect the effect of the general anesthetic isofluorane, a drug used widely by physicians to induce anesthesia in patients, on supported dipalmitoylphophatidylcholine (DPPC) planar bilayers using AFM. Bilayers were formed using the vesicle fusion method and imaged with Pico AFM.
Original Publication Citation
M. Chad., C. Hiram, D. D. Busath (21). AFM study of structural changes in supported planar DPPC bilayers containing general anesthetic isofluorane (plus additional AFM experiments).
BYU ScholarsArchive Citation
McKell, Chad; Conley, Hiram; and Busath, David D., "AFM Study of Structural Changes in Supported Planar DPPC Bilayers Containing General Anesthetic Isofluorane (Plus Additional AFM Experiments)" (2010). Faculty Publications. 827.
https://scholarsarchive.byu.edu/facpub/827
Document Type
Peer-Reviewed Article
Publication Date
2010-01-01
Permanent URL
http://hdl.lib.byu.edu/1877/2172
Language
English
College
Life Sciences
Department
Physiology and Developmental Biology
Copyright Status
© 2010 Chad McKell, et al.
Copyright Use Information
http://lib.byu.edu/about/copyright/