Keywords

ruthenium, binary alloys, phase, transition metals

Abstract

Despite the increasing importance of ruthenium in numerous technological applications, e.g., catalysis and electronic devices, experimental and computational data on its binary alloys are sparse. In particular, data are scant on those binary systems believed to be phase-separating. We performed a comprehensive study of ruthenium binary systems with the 28 transition metals, using high-throughput first-principles calculations. These computations predict novel unsuspected compounds in 7 of the 16 binary systems previously believed to be phase-separating and in two of the three systems reported with only a high-temperature σ phase. They also predict a few unreported compounds in five additional systems and indicate that some reported compounds may actually be unstable at low temperature. These new compounds may be useful in the rational design of new Ru-based catalysts. The following systems are investigated: AgRu, AuRu, CdRu, CoRu, CrRu, CuRu, FeRu, HfRu, HgRu, IrRu, MnRu, MoRu, NbRu, NiRu, OsRu, PdRu, PtRu, ReRu, RhRu, RuSc, RuTa, RuTc, RuTi, RuV, RuW, RuY, RuZn, and RuZr (a star denotes systems in which the ab initio method predicts that no compounds are stable).

Original Publication Citation

Michal Jahnatek, Ohad Levy, Gus L. W. Hart, Lance J. Nelson*, Roman V. Chepulskii, J. Xue*, and Stefano Curtarolo, "Ordered phases in ruthenium binary alloys from high-throughput first principles," Phys. Rev. B 84, 21411 (Dec. 211). The original article may be found here: http://prb.aps.org/abstract/PRB/v84/i21/e21411

Document Type

Peer-Reviewed Article

Publication Date

2011-12-20

Permanent URL

http://hdl.lib.byu.edu/1877/2965

Publisher

The American Physical Society

Language

English

College

Physical and Mathematical Sciences

Department

Physics and Astronomy

Share

COinS