Keywords

crystal structures, phases, intermetallic system, cluster expansion

Abstract

Despite their geometric simplicity, the crystal structures L11 (CuPt) and L13 (CdPt3) do not appear as ground states experimentally, except in Cu-Pt. We investigate the possibility that these phases are ground states in other binary intermetallic systems, but overlooked experimentally. Via the synergy between high-throughput and cluster-expansion computational methods, we conduct a thorough search for systems that may exhibit these phases and calculate order-disorder transition temperatures when they are predicted. High-throughput calculations predict L11 ground states in the systems Ag-Pd, Ag-Pt, Cu-Pt, Pd-Pt, Li-Pd, Li-Pt and L13 ground states in the systems Cd-Pt, Cu-Pt, Pd-Pt, Li-Pd, Li-Pt. Cluster expansions confirm the appearance of these ground states in some cases. In the other cases, cluster expansion predicts unsuspected derivative superstructures as ground states. The order-disorder transition temperatures for all L11/L13 ground states were found to be sufficiently high that their physical manifestation may be possible.

Original Publication Citation

Lance J. Nelson*, Stefano Curtarolo, Gus L. W. Hart, "Ground-state characterizations of systems predicted to exhibit L11 or L13 crystal structures," Phys. Rev. B 85, 5423 (212). The original article may be found here: http://prb.aps.org/abstract/PRB/v85/i5/e5423

Document Type

Peer-Reviewed Article

Publication Date

2012-02-08

Permanent URL

http://hdl.lib.byu.edu/1877/2960

Publisher

The American Physical Society

Language

English

College

Physical and Mathematical Sciences

Department

Physics and Astronomy

Share

COinS