Keywords

Bayes methods, decision theory, probability

Abstract

The basic concepts of Levi's epistemic utility theory and credal convexity are presented. Epistemic utility, in addition to penalizing error as is done with traditional Bayesian decision methodology, permits a unit of informational value to be distributed among the hypotheses of a decision problem. Convex Bayes decision theory retains the conditioning structure of probability-based inference, but addresses many of the objections to Bayesian inference through relaxation of the requirement for numerically definite probabilities. The result is a decision methodology that stresses avoiding errors and seeks decisions that are likely to be highly informative as well as true. By relaxing the mandatory requirement for unique decisions and point estimates in all cases, decision and estimation criteria that do not demand more than is possible to obtain from the data and permit a natural man-in-the-loop interface are obtained. Applications are provided to illustrate the theory.

Original Publication Citation

Stirling, W. C., and D. R. Morrell. "Convex Bayes Decision Theory." Systems, Man and Cybernetics, IEEE Transactions on 21.1

Document Type

Peer-Reviewed Article

Publication Date

1991-02-01

Permanent URL

http://hdl.lib.byu.edu/1877/1032

Publisher

IEEE

Language

English

College

Ira A. Fulton College of Engineering and Technology

Department

Electrical and Computer Engineering

Share

COinS