Keywords

swelling, coal char, pyrolysis

Abstract

Concern about comparability and validity of different methods for producing coal chars for reactivity experiments has led to research on the effect of devolatilization conditions on the char physical and chemical structure. Particle diameter and porosity changes during devolatilization significantly affect char oxidation rates. In particular, physical properties of chars prepared in drop tube reactors differ greatly from chars prepared in flat flame burner experiments. Recent data indicate that the presence of oxygen in the gas atmosphere has no effect on swelling until char oxidation has begun. The present research concentrates on the effects of heating rate, particle temperature and residence time on the swelling and porosity of a plastic coal, and compares these results with a nonplastic coal. The heating rate at which the transition from increasing swelling to decreasing swelling occurs is approximately 5 × 103 K/s for swelling coals. Swelling coals also reach a maximum porosity near this heating rate. At low particle heating rates swelling gradually increases versus heating rate in contrast to a decline in the swelling at high heating rates in a narrow heating rate region of 2 × 104 to 7 × 104 K/s. Nonswelling bituminous and lignite coals continue to increase in porosity beyond the heating rate of 2 × 104 K/s..

Original Publication Citation

Gale, T. K., C. H. Bartholomew, and T. H. Fletcher, "Decreases in the Swelling and Porosity of Bituminous Coals During Devolatilization at High Heating Rates," Combustion and Flame, 100, 94-100 (1995). DOI: 10.1021/ef00051a017

Document Type

Peer-Reviewed Article

Publication Date

1995

Permanent URL

http://hdl.lib.byu.edu/1877/8887

Publisher

Elsevier

Language

English

College

Ira A. Fulton College of Engineering and Technology

Department

Chemical Engineering

University Standing at Time of Publication

Associate Professor

Share

COinS