Keywords
crystallographic texture, Microstructure Sensitive Design, Plastic deformation, Tensile load
Abstract
Financial support for this work was provided by the Army Research Office, Proposal No. 42566-MS, Dr. David Stepp, Program Director and Army Research Lab, Dr. Scott Schoenfeld, Point of Contact. Microstructure Sensitive Design (MSD) is a newly developed mathematical framework that facilitates rigorous solutions to inverse problems in microstructure design of materials. In this paper, this methodology is applied to an orthotropic thin plate containing a circular hole subjected to an in-plane uniaxial tensile load. The primary design objective is to maximize the load carrying capacity of the plate while avoiding plastic deformation in the plate. Making use of the inherent anisotropy of fcc polycrystals arising from distribution of lattice orientations (also referred to as crystallographic texture), microstructures have been identified in copper that are predicted to yield the best and worst possible performance, respectively. The microstructure with the best load carrying capacity was found to show an increase of about 59% compared to the microstructure with the worst load carrying capacity. The solutions from the MSD methodology were validated by direct comparisons from finite element simulations that employed a Taylor-type polycrystal constitutive model at each integration point. A reasonable agreement was obtained between MSD predictions and finite element simulations.
Original Publication Citation
International Journal of Plasticity 2 (24) 1561-1575
BYU ScholarsArchive Citation
Adams, Brent L.; Lyons, Mark; Houskamp, Joshua R.; and Kalidindi, Surya R., "Microstructure sensitive design of an orthotropic plate subjected to tensile load" (2003). Faculty Publications. 494.
https://scholarsarchive.byu.edu/facpub/494
Document Type
Peer-Reviewed Article
Publication Date
2003-05-07
Permanent URL
http://hdl.lib.byu.edu/1877/92
Publisher
Elsevier Ltd.
Language
English
College
Ira A. Fulton College of Engineering and Technology
Department
Mechanical Engineering
Copyright Status
© 2003 Brent L. Adams, Mark Lyons, Joshua R. Houskamp, and Surya R. Kalidindi
Copyright Use Information
http://lib.byu.edu/about/copyright/