Keywords
dicotron frequency, equilibrium calculation, non-neutral plasma, Debye
Abstract
The m = 1 diocotron mode in non-neutral plasmas has long been thought of as a shifted equilibrium, and its frequency has been approximately calculated in this way by Fine and Driscoll [Phys. Plasmas 5, 601 (1998)]. This article shows that this idea can be coupled with a standard axisymmetric equilibrium calculation on a grid to calculate the frequency of this mode to very high precision including both finite-length and thermal effects, provided that the Debye length is small enough. As the Debye length begins to approach the plasma size not only does the shifted equilibrium calculation fail to predict correctly the frequency of the mode, but the idea that the mode is a simple shift of the original equilibrium also becomes invalid.
Original Publication Citation
Spencer, Ross L."Computing the m = 1 diocotron frequency via an equilibrium calculation in non-neutral plasmas." Physics of Plasmas 11 (24): 5356-5359.
BYU ScholarsArchive Citation
Spencer, Ross L., "Computing the m = 1 diocotron frequency via an equilibrium calculation in non-neutral plasmas" (2004). Faculty Publications. 411.
https://scholarsarchive.byu.edu/facpub/411
Document Type
Peer-Reviewed Article
Publication Date
2004-10-22
Permanent URL
http://hdl.lib.byu.edu/1877/1268
Publisher
AIP
Language
English
College
Physical and Mathematical Sciences
Department
Physics and Astronomy
Copyright Status
© 2004 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in The Journal of Chemical Physics and may be found at http://link.aip.org/link/?PHPAEN/11/5356/1
Copyright Use Information
http://lib.byu.edu/about/copyright/