Visual odometry and control for an omnidirectional mobile robot with a downward-facing camera
Keywords
Wheels, Robot kinematics, Mobile robots, Cameras, Robot vision systems, Equations
Abstract
An omnidirectional Mecanum base allows for more flexible mobile manipulation. However, slipping of the Mecanum wheels results in poor dead-reckoning estimates from wheel encoders, limiting the accuracy and overall utility of this type of base. We present a system with a downward-facing camera and light ring to provide robust visual odometry estimates. We mounted the system under the robot which allows it to operate in conditions such as large crowds or low ambient lighting. We demonstrate that the visual odometry estimates are sufficient to generate closed-loop PID (Proportional Integral Derivative) and LQR (Linear Quadratic Regulator) controllers for motion control in three different scenarios: waypoint tracking, small disturbance rejection, and sideways motion. We report quantitative measurements that demonstrate superior control performance when using visual odometry compared to wheel encoders. Finally, we show that this system provides high-fidelity odometry estimates and is able to compensate for wheel slip on a four-wheeled omnidirectional mobile robot base.
BYU ScholarsArchive Citation
Killpack, Marc D.; Deyle, Travis; Anderson, Cressel; and Kemp, Charles C., "Visual odometry and control for an omnidirectional mobile robot with a downward-facing camera" (2010). Faculty Publications. 3222.
https://scholarsarchive.byu.edu/facpub/3222
Document Type
Peer-Reviewed Article
Publication Date
2010-10
Permanent URL
http://hdl.lib.byu.edu/1877/6033
Publisher
IEEE
Language
English
College
Physical and Mathematical Sciences
Department
Mechanical Engineering
Copyright Status
© Copyright 2019 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.