Keywords

Transient radiative transfer; Reduced-order modeling; Monte Carlo simulations

Abstract

Due to the widespread existence and importance of foam, inverse techniques for characterizing industrial foams are of interest. An essential element in an inverse method used to characterize a foam layer is a model of the time-dependent reflectance of a laser pulse. Monte Carlo methods may be used to accurately model reflectance, but these methods are computationally expensive. Computationally efficient methods based on the diffusion approximation have been developed, but this approach is not sufficiently accurate in many cases of interest. Therefore, a computationally efficient and robust method is desirable. This paper presents a computationally efficient method for modeling the time-dependent reflectance of a laser pulse from a non-absorbing, scattering plane layer that is based on reduced-order modeling techniques. The accuracy of the proposed method is demonstrated by comparing reflectance profiles for randomly selected foam layer properties with corresponding profiles that were generated from Monte Carlo simulations.

Original Publication Citation

Journal of Quantitative Spectroscopy & Radiative Transfer 109 (2008) 201–209

Document Type

Peer-Reviewed Article

Publication Date

2008-1

Permanent URL

http://hdl.lib.byu.edu/1877/5999

Publisher

Elsevier

Language

English

College

Ira A. Fulton College of Engineering and Technology

Department

Mechanical Engineering

University Standing at Time of Publication

Associate Professor

Share

COinS