Keywords
trajectory optimization, high altitude long endurance (HALE), aircraft, solar powered aircraft, station keeping, nonlinear model predictive control, UAV, drone
Abstract
This paper demonstrates the use of nonlinear dynamic optimization to calculate energy- optimal trajectories for a high-altitude, solar-powered Unmanned Aerial Vehicle (UAV). The objective is to maximize the total energy in the system while staying within a 3 km mission radius and meeting other system constraints. Solar energy capture is modeled using the vehicle orientation and solar position, and energy is stored both in batteries and in potential energy through elevation gain. Energy capture is maximized by optimally adjusting the angle of the aircraft surface relative to the sun. The UAV flight and energy system dynamics are optimized over a 24-hour period at an eight-second time resolution using Nonlinear Model Predictive Control (NMPC). Results of the simulated flights are presented for all four seasons, showing 8.2% increase in end-of-day battery energy for the most limiting flight condition of the winter solstice.
Original Publication Citation
Martin, R. A., Gates, N. S., Ning, A., and Hedengren, J. D., “Dynamic Optimization of High-Altitude Solar Aircraft Trajectories Under Station-Keeping Constraints,” Journal of Guidance, Control, and Dynamics, Nov. 2018. doi:10.2514/1.G003737
BYU ScholarsArchive Citation
Martin, Abraham; Gates, Nathaniel; Ning, Andrew; and Hedengren, John, "Dynamic Optimization of High-Altitude Solar Aircraft Trajectories Under Station-Keeping Constraints" (2018). Faculty Publications. 2938.
https://scholarsarchive.byu.edu/facpub/2938
Document Type
Peer-Reviewed Article
Publication Date
2018-11
Permanent URL
http://hdl.lib.byu.edu/1877/5752
Publisher
AIAA
Language
English
College
Ira A. Fulton College of Engineering and Technology
Department
Mechanical Engineering