Keywords
Kerr spectoscopy, magnetization, nanomagnets
Abstract
The authors use time-resolved cavity-enhanced magneto-optical Kerr spectroscopy to study the damping of magnetization precession in individual cylindrical nickel nanomagnets. A wide range of shapes (diameters of 5 µm–125 nm and aspect ratio: 0.03–1.2) is investigated. They observe a pronounced difference in damping between the micro- and nanomagnets. Microscale magnets show large damping at low bias fields, whereas nanomagnets exhibit bias field-independent damping. This behavior is explained by the interaction of in-plane and out-of-plane precession modes in microscale magnets that results in additional dissipative channels. The small and robust damping values on the nanoscale are promising for implementation of controlled precessional switching schemes in nanomagnetic devices.
Original Publication Citation
Barman, A., S. Wang, J. Maas, A. R. Hawkins, S. Kwon, J. Bokor, A. Liddle, and H. Schmidt. "Size dependent damping in picosecond dynamics of single nanomagnets." Applied Physics Letters 9 (27)
BYU ScholarsArchive Citation
Hawkins, Aaron R.; Maas, J. D.; Wang, S.; Barman, A.; Schmidt, Holger; Kwon, Liddle A.; and Bokor, J., "Size dependent damping in picosecond dynamics of single nanomagnets" (2007). Faculty Publications. 256.
https://scholarsarchive.byu.edu/facpub/256
Document Type
Peer-Reviewed Article
Publication Date
2007-05-17
Permanent URL
http://hdl.lib.byu.edu/1877/1108
Publisher
AIP
Language
English
College
Ira A. Fulton College of Engineering and Technology
Department
Electrical and Computer Engineering
Copyright Status
© 2007 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in Applied Physics Letters and may be found at http://link.aip.org/link/?APPLAB/90/202504/1
Copyright Use Information
http://lib.byu.edu/about/copyright/