Keywords
quantum electrodynamics, self-fields, nonrelativistic
Abstract
Using a formulation of quantum electrodynamics that is not second quantized, but rather based on self-fields, we compute the anomalous magnetic moment of the electron to first order in the fine structure constant α. In the nonrelativistic (NR) case and in the dipole approximation, our result is ae≡(g—2)/2=(4Λ/3m)(α/2π), where Λ is a positive photon energy cutoff and m the electron mass. A reasonable choice of cutoff, Λ/m=¾, yields the correct sign and magnitude for g—2 namely, ae=+α/2π. . In our formulation the sign of a3 is correctly positive, independent of cutoff, and the demand that ae=+α/2π implies a unique value for Λ. This is in contradistinction to previous NR calculations of ae that employ electromagnetic vacuum fluctuations instead of self-fields; in the vacuum fluctuation case the sign of ae is cutoff dependent and the equation ae=α/2π does not have a unique solution in Λ.
Original Publication Citation
Barut, A. O., Dowling, J. P., & van Huele, J. F. (1988). Quantum electrodynamics based on self-fields, without second quantization: A nonrelativistic calculation of g – 2. Physical Review A, 38(9), 4405-4412.
BYU ScholarsArchive Citation
Barut, A. O.; Dowling, Jonathan P.; and Van Huele, Jean F., "Quantum Electrodynamics Based on Self-fields, Without Second Quantization: A Nonrelativisitc Calculation of g – 2" (1988). Faculty Publications. 1850.
https://scholarsarchive.byu.edu/facpub/1850
Document Type
Peer-Reviewed Article
Publication Date
1988
Permanent URL
http://hdl.lib.byu.edu/1877/3804
Publisher
American Physical Society
Language
English
College
Physical and Mathematical Sciences
Department
Physics and Astronomy
Copyright Status
© 1988 American Physical Society. This article is the Version of Record published by the American Physical Society in Physical Review A in 1988, available online at https://doi.org/10.1103/PhysRevA.38.4405
Copyright Use Information
http://lib.byu.edu/about/copyright/