Keywords
synthetic vocal folds, stress-strain, linear, nonlinear
Abstract
Purpose: The purpose of this study was to create synthetic vocal fold models with nonlinear stress-strain properties and to investigate the effect of linear versus nonlinear material properties on fundamental frequency during anterior-posterior stretching.
Method: Three materially linear and three materially nonlinear models were created and stretched up to 10 mm in 1 mm increments. Phonation onset pressure (Pon), fundamental frequency (F0) at Pon, and F0 at 0.20 kPa above Pon were recorded for each length. Measurements were repeated as the models were relaxed in 1 mm increments back to their resting lengths, and tensile tests were conducted to determine the stress-strain responses of linear versus nonlinear models.
Results: Nonlinear models demonstrated a more substantial frequency response than did linear models and a more predictable pattern of F0 increase with respect to increasing length (although range was inconsistent across models). Pon generally increased with increasing vocal fold length for nonlinear models, whereas for linear models, Pon decreased with increasing length.
Conclusions: Nonlinear synthetic models appear to more accurately represent the human vocal folds than linear models, especially with respect to F0 response.
Original Publication Citation
Shaw, S.M., Thomson, S.L., Dromey, C. & Smith, S. (2012). Frequency response of synthetic vocal fold models with linear and nonlinear material properties. Journal of Speech, Language, and Hearing Research, 55, 1395-1406.
BYU ScholarsArchive Citation
Shaw, Stephanie M.; Thomson, Scott L.; Dromey, Christopher; and Smith, Simeon, "Frequency Response of Synthetic Vocal Fold Models with Linear and Nonlinear Material Properties" (2012). Faculty Publications. 1786.
https://scholarsarchive.byu.edu/facpub/1786
Document Type
Peer-Reviewed Article
Publication Date
2012
Permanent URL
http://hdl.lib.byu.edu/1877/3736
Publisher
American Speech-Language-Hearing Association
Language
English
College
David O. McKay School of Education
Department
Communication Disorders
Copyright Status
© 2012, American Speech-Language-Hearing Association. All rights reserved. This is the author's submitted version of this article. The definitive version can be found at http://jslhr.pubs.asha.org/article.aspx?articleid=1782676
Copyright Use Information
http://lib.byu.edu/about/copyright/