Keywords
UAS trajectories, UAV path planning, ADS-B, convex optimization, separation assurance, detect and avoid
Abstract
This paper presents a time-based path planning optimizer for separation assurance for unmanned aircraft systems (UAS). Given Automatic Dependent Surveillance-Broadcast (ADS-B) as a sensor, intruder information such as position, velocity, and identification information is available at ranges on the order of 50 nautical miles. Such long-range intruder detection facilitates path planning for separation assurance, but also poses computational challenges. The time-based path optimizer presented in this paper provides a path-planning method that takes advantage of long-range ADS-B information and addresses the associated challenges. It is capable of long-range path planning and, due to the convex formulation, is computationally efficient enough to run successively for increased robustness. The ultimate result of this research is a convex, time-based path planner that is suitable for a detect-and-avoid solution on small UAS in the National Airspace System.
Original Publication Citation
Duffield, M., Ning, A., and McLain, T., “Optimization-Based Path Planning for Separation Assurance on Small Unmanned Aircraft,” AIAA Guidance, Navigation, and Control Conference, San Diego, CA, Jan. 2016. doi:10.2514/6.2016-2194
BYU ScholarsArchive Citation
Duffield, Matthew; Ning, Andrew; and McLain, Timothy, "Optimization-Based Path Planning for Separation Assurance on Small Unmanned Aircraft" (2016). Faculty Publications. 1721.
https://scholarsarchive.byu.edu/facpub/1721
Document Type
Conference Paper
Publication Date
2016-1
Permanent URL
http://hdl.lib.byu.edu/1877/3661
Publisher
AIAA
Language
English
College
Ira A. Fulton College of Engineering and Technology
Department
Mechanical Engineering
Copyright Use Information
http://lib.byu.edu/about/copyright/