Constrained Nonlinear Estimation for Industrial Process Fouling
Keywords
plugging, fouling, moving horizon estimation, industrial process control
Abstract
Industrial process monitoring tools require robust and efficient estimation techniques that maintain a high service factor by remaining online during abnormal operating conditions, such as during loss of measurements, changes in control status, or maintenance. Constraints incorporate additional process knowledge into estimation by bounding estimated disturbances within feasibility limits thereby providing robustness to faulty measurements or conditions that violate process models. Moving horizon estimation (MHE) and unscented Kalman filtering (UKF) are two estimation techniques that permit incorporation of constraints prior to evaluating the a priori estimate. This paper evaluates both constrained nonlinear estimators versus the extended Kalman filter (EKF) using industrial process data provided by ExxonMobil Chemical Company. Results provide short-term insight into the fouling process, and parameter estimates produced by UKF and MHE are shown to be more accurate than EKF.
Original Publication Citation
http://pubs.acs.org/doi/abs/10.1021/ie9018116
BYU ScholarsArchive Citation
Spivey, Ben; Hedengren, John; and Edgar, Thomas F., "Constrained Nonlinear Estimation for Industrial Process Fouling" (2010). Faculty Publications. 1717.
https://scholarsarchive.byu.edu/facpub/1717
Document Type
Peer-Reviewed Article
Publication Date
2010-05-09
Permanent URL
http://hdl.lib.byu.edu/1877/3657
Publisher
Industrial & Engineering Chemistry Research
Language
English
College
Ira A. Fulton College of Engineering and Technology
Department
Chemical Engineering
Copyright Status
Copyright © 2010 American Chemical Society.
Copyright Use Information
http://lib.byu.edu/about/copyright/