Keywords
Cryogenic Carbon Capture, Fossil-fueled power production, Renewable energy generation, Dynamic optimization
Abstract
Increasing competitiveness of renewable power sources due to tightening restrictions on CO2 emission from fossil fuel combustion is expected to cause a shift in power generation systems of the future. This investigation considers the impact of the Cryogenic Carbon Capture™ (CCC) process on transitional power generation. The CCC process consumes less energy than chemical and physical absorption processes and has an energy storage capability that shifts the parasitic loss of the CCC process away from peak hours. The CCC process responds rapidly to the variation of electricity demand and has a time constant that is consistent with the intermittent supply from renewable power sources. The hybrid system of conventional and renewable power generation units and the CCC process are optimized in this investigation. The system under consideration consists of load-following coal and gas-fired power units, a CCC process, and wind generation. The objective is to meet the residential and CCC plant electricity demands while maximizing the operating profit. The results demonstrate that an average profit of $35 k/hr is obtained from this hybrid system over the selected days. The total electricity demand is best met using a combination of coal, gas, and wind power with grid-scale energy storage.
Original Publication Citation
http://www.sciencedirect.com/science/article/pii/S030626191500402X
BYU ScholarsArchive Citation
Safdarnejad, Seyed M.; Hedengren, John; and Baxter, Larry Lin, "Plant-level Dynamic Optimization of Cryogenic Carbon Capture with Conventional and Renewable Power Sources" (2015). Faculty Publications. 1689.
https://scholarsarchive.byu.edu/facpub/1689
Document Type
Peer-Reviewed Article
Publication Date
2015-07-01
Permanent URL
http://hdl.lib.byu.edu/1877/3629
Publisher
Applied Energy, Elsevier
Language
English
College
Ira A. Fulton College of Engineering and Technology
Department
Chemical Engineering
Copyright Status
© 2015 Elsevier Ltd. All rights reserved.
Copyright Use Information
http://lib.byu.edu/about/copyright/