Keywords
large-scale systems biology, ErbB signaling pathway, differential algebraic equations, data reconciliation, parameter sensitivity, hybrid simultaneous optimization, structural decomposition
Abstract
In recent years, model optimization in the field of computational biology has become a prominent area for development of pharmaceutical drugs. The increased amount of experimental data leads to the increase in complexity of proposed models. With increased complexity comes a necessity for computational algorithms that are able to handle the large datasets that are used to fit model parameters. In this study the ability of simultaneous, hybrid simultaneous, and sequential algorithms are tested on two models representative of computational systems biology. The first case models the cells affected by a virus in a population and serves as a benchmark model for the proposed hybrid algorithm. The second model is the ErbB model and shows the ability of the hybrid sequential and simultaneous method to solve large-scale biological models. Post-processing analysis reveals insights into the model formulation that are important for understanding the specific parameter optimization. A parameter sensitivity analysis reveals shortcomings and difficulties in the ErbB model parameter optimization due to the model formulation rather than the solver capacity. Suggested methods are model reformulation to improve input-to-output model linearity, sensitivity ranking, and choice of solver.
Original Publication Citation
http://www.mdpi.com/2227-9717/3/3/701/html
BYU ScholarsArchive Citation
Lewis, Nicholas; Hedengren, John; and Haseltine, Eric, "Hybrid Dynamic Optimization Methods for Systems Biology with Efficient Sensitivities" (2015). Faculty Publications. 1687.
https://scholarsarchive.byu.edu/facpub/1687
Document Type
Peer-Reviewed Article
Publication Date
2015-09-21
Permanent URL
http://hdl.lib.byu.edu/1877/3627
Publisher
Processes, MDPI
Language
English
College
Ira A. Fulton College of Engineering and Technology
Department
Chemical Engineering
Copyright Status
Open Access, MDPI
Copyright Use Information
http://lib.byu.edu/about/copyright/