Thermal Energy Storage to Minimize Cost and Improve Efficiency of a Polygeneration District Energy System in a Real-time Electricity Market
Keywords
Polygeneration, Thermal energy storage, Combined heat and power, Dynamic optimization, District energy systems
Abstract
District energy systems can produce low-cost utilities for large energy networks, but can also be a resource for the electric grid by their ability to ramp production or to store thermal energy by responding to real-time market signals. In this work, dynamic optimization exploits the flexibility of thermal energy storage by determining optimal times to store and extract excess energy. This concept is applied to a polygeneration distributed energy system with combined heat and power, district heating, district cooling, and chilled water thermal energy storage. The system is a university campus responsible for meeting the energy needs of tens of thousands of people. The objective for the dynamic optimization problem is to minimize cost over a 24-h period while meeting multiple loads in real time. The paper presents a novel algorithm to solve this dynamic optimization problem with energy storage by decomposing the problem into multiple static mixed-integer nonlinear programming (MINLP) problems. Another innovative feature of this work is the study of a large, complex energy network which includes the interrelations of a wide variety of energy technologies. Results indicate that a cost savings of 16.5% is realized when the system can participate in the wholesale electricity market.
Original Publication Citation
http://www.sciencedirect.com/science/article/pii/S0360544216309252
BYU ScholarsArchive Citation
Powell, Kody; Kim, J. S.; Kapoor, K.; Mojica, Jose L.; Hedengren, John; and Edgar, Thomas F., "Thermal Energy Storage to Minimize Cost and Improve Efficiency of a Polygeneration District Energy System in a Real-time Electricity Market" (2016). Faculty Publications. 1684.
https://scholarsarchive.byu.edu/facpub/1684
Document Type
Peer-Reviewed Article
Publication Date
2016-10-15
Permanent URL
http://hdl.lib.byu.edu/1877/3624
Publisher
Elsevier
Language
English
College
Ira A. Fulton College of Engineering and Technology
Department
Chemical Engineering
Copyright Status
© 2016 Elsevier Ltd. All rights reserved.
Copyright Use Information
http://lib.byu.edu/about/copyright/