Keywords
position control, MEMS, thermal actuator
Abstract
Feedback control of MEMS devices has the potential to significantly improve device performance and reliability. One of the main obstacles to its broader use is the small number of on-chip sensing options available to MEMS designers. A method of using integrated piezoresistive sensing is proposed and demonstrated as another option. Integrated piezoresistive sensing utilizes the inherent piezoresistive property of polycrystalline silicon from which many MEMS devices are fabricated. As compliant MEMS structure’s flex to perform their functions, their resistance changes. That resistance change can be used to transduce the structures’ deflection into an electrical signal. The piezoresistive microdisplacement transducer (PMT) is a demonstration structure that uses integrated piezoresistive sensing to monitor the output displacement of a thermomechanical inplane microactuator (TIM). Using the PMT as a feedback sensor for closed-loop control of the TIM provided excellent tracking with no evident steady-state error, maintained the positioning resolution to ±29 nm or less, and increased the robustness of the system such that it was insensitive to significant damage.
Original Publication Citation
Messenger R., Aten, Q., McLain, T., and Howell, L. Piezoresistive Feedback Control of a MEMS Thermal Actuator, Journal of Microelectromechanical Systems, vol 18, no. 6, pp. 1267-1278, 2009.
BYU ScholarsArchive Citation
Messenger, Robert K.; Aten, Quentin Theodore; McLain, Timothy W.; and Howell, Larry L., "Piezoresistive Feedback Control of a MEMS Thermal Actuator" (2009). Faculty Publications. 1535.
https://scholarsarchive.byu.edu/facpub/1535
Document Type
Peer-Reviewed Article
Publication Date
2009
Permanent URL
http://hdl.lib.byu.edu/1877/3402
Publisher
IEEE
Language
English
College
Ira A. Fulton College of Engineering and Technology
Department
Mechanical Engineering
Copyright Status
(c) 2009 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works. DOI: 10.1109/JMEMS.2009.2035370
Copyright Use Information
http://lib.byu.edu/about/copyright/