Keywords
path planning, UAV, unmanned aircraft
Abstract
This paper presents a path planner for sensing closely-spaced targets from a fixed-wing unmanned air vehicle (UAV) having a specified sensor footprint. The planner is based on the learning real-time A* (LRTA*) search algorithm and produces dynamically feasible paths that accomplish the sensing objectives in the shortest possible distance. A tree of candidate paths that span the area of interest is created by assembling primitive turn and straight sections of a specified step size in a sequential fashion from the starting position of the UAV. An LRTA* search of the tree produces feasible paths any time during its execution and minimum length paths if run to completion. The running time and path-length performance of the search are directly influenced by the operating parameters of the LRTA* algorithm. To improve the running time of the planner, a modified LRTA* search that terminates when there is no improvement in the path for a pre- defined number of iterations is implemented. The result is a path planner that produces short-distance paths in acceptably short running times.
Original Publication Citation
Jason Howlett, Michael A. Goodrich, and Tim McLain. "Learning Real-Time A* Path Planner for Unmanned Air Vehicle Target Sensing". Journal of Aerospace Computing Information and Communication 3(3):108-122 · February 2006. DOI: 10.2514/1.16623
BYU ScholarsArchive Citation
Howlett, Jason K.; McLain, Timothy W.; and Goodrich, Michael A., "Learning Real-Time A* Path Planner for Unmanned Air Vehicle Target Sensing" (2006). Faculty Publications. 1511.
https://scholarsarchive.byu.edu/facpub/1511
Document Type
Peer-Reviewed Article
Publication Date
2006-3
Permanent URL
http://hdl.lib.byu.edu/1877/3426
Publisher
AIAA
Language
English
College
Ira A. Fulton College of Engineering and Technology
Department
Mechanical Engineering
Copyright Status
Howlett, J., McLain, T., and Goodrich, M. Learning Real-Time A* Path Planner for Unmanned Air Vehicle Target Sensing. AIAA Journal of Aerospace Computing, Information, and Communication, vol. 3, no. 3, pp. 108-122, March 2006. doi: 10.2514/1.16623
Copyright Use Information
http://lib.byu.edu/about/copyright/