Keywords
survival analysis, microarray, elastic net, variable selection
Abstract
Use of microarray technology often leads to high-dimensional and low-sample size (HDLSS) data settings. A variety of approaches have been proposed for variable selection in this context. However, only a small number of these have been adapted for time-to-event data where censoring is present. Among standard variable selection methods shown both to have good predictive accuracy and to be computationally efficient is the elastic net penalization approach. In this paper, adaptations of the elastic net approach are presented for variable selection both under the Cox proportional hazards model and under an accelerated failure time (AFT) model. Assessment of the two methods is conducted through simulation studies and through analysis of microarray data obtained from a set of patients with diffuse large B-cell lymphoma where time to survival is of interest. The approaches are shown to match or exceed the predictive performance of a Cox-based and an AFT-based variable selection method. The methods are moreover shown to be much more computationally efficient than their respective Cox- and AFT-based counterparts.
Original Publication Citation
Engler, David and Li, Yi (29) "Survival Analysis with High-Dimensional Covariates: An Application in Microarray Studies," Statistical Applications in Genetics and Molecular Biology: Vol. 8 : Iss. 1, Article 14.
BYU ScholarsArchive Citation
Engler, David and Li, Yi, "Survival Analysis with High-Dimensional Covariates: An Application in Microarray Studies" (2009). Faculty Publications. 143.
https://scholarsarchive.byu.edu/facpub/143
Document Type
Peer-Reviewed Article
Publication Date
2009-02-11
Permanent URL
http://hdl.lib.byu.edu/1877/1375
Publisher
Berkeley Electronic Press
Language
English
College
Physical and Mathematical Sciences
Department
Statistics
Copyright Status
© 2009 The Berkeley Electronic Press Available at: http://www.bepress.com/sagmb/vol8/iss1/art14
Copyright Use Information
http://lib.byu.edu/about/copyright/