Keywords
DFT, Discrete Fourier Transform, Discrete Hilbert Transform, Hilbert Transform, Signal Analysis
Abstract
The use of the Hilbert transform for time/frequency analysis of signals is briefly considered. While the Hilbert transform is based on arbitrary continuous signals, most practical signals are digitially sampled and time-limited. To avoid aliasing in the sampling process the signals must also be bandlimited. It is argued that it is reasonable to consider such sampled signals as periodic (this is the basis of the Discrete Fourier Transform [DFT]) since any other interpretation is inconsistent. A simple derivation of the Hilbert transform for a sampled, periodic is then given. It is shown that the instantaneous frequency can be easily computed from the Discrete Fourier Series (or, equivalently, the DFT) representation of the signal. Since this representation is exact, the Hilbert transform representation is also exact.
Original Publication Citation
MERS Tech. Rep. # MERS 4-1, Brigham Young University, Provo, UT
BYU ScholarsArchive Citation
Long, David G., "Comments on Hilbert Transform Based Signal Analysis" (2004). Faculty Publications. 1312.
https://scholarsarchive.byu.edu/facpub/1312
Document Type
Report
Publication Date
2004-02-13
Permanent URL
http://hdl.handle.byu.edu/1877/24
Publisher
BYU Microwave Remote Sensing (MERS) Laboratory
Language
English
College
Ira A. Fulton College of Engineering and Technology
Department
Electrical and Computer Engineering
Copyright Status
© Copyright 1995, 2004, Brigham Young University. All rights reserved.
Copyright Use Information
http://lib.byu.edu/about/copyright/