Keywords
MEKF, Sensor Fusion, GPS-Denied Navigation, Quaternions, Quadrotor, Indoor Flight
Abstract
In this article we detail the fundamentals of a new approach to GPS-denied navigation for aerial vehicles in confined indoor environments. We depart from the common practice of navigating within a globally referenced map, and instead keep the position and yaw states relative to the current node in the map. The approach combines elements of graph SLAM with a multiplicative extended Kalman filter (MEKF). The filter provides quality state estimates at a fast rate and a graph SLAM algorithm maintains a pose graph. We provide specific details for the relative MEKF. We verify the relative estimation approach with hardware flight test results accompanied by comparisons to motion capture truth. We also provide flight results with estimates in the control loop.
Original Publication Citation
Robert C. Leishman and Timothy W. McLain. "Multiplicative Extended Kalman Filter for Relative Rotorcraft Navigation", Journal of Aerospace Information Systems, Vol. 12, Special Section on Estimation and Information Theory Application for Resilient and Distributed Operation of Aerospace Systems (2015), pp. 728-744. doi: 10.2514/1.I010236
BYU ScholarsArchive Citation
Leishman, Robert C. and McLain, Timothy W., "A Multiplicative Extended Kalman Filter for Relative Rotorcraft Navigation" (2013). Faculty Publications. 1299.
https://scholarsarchive.byu.edu/facpub/1299
Document Type
Report
Publication Date
2013-03-25
Permanent URL
http://hdl.lib.byu.edu/1877/3102
Language
English
College
Ira A. Fulton College of Engineering and Technology
Department
Mechanical Engineering
Copyright Status
© 2013
Copyright Use Information
http://lib.byu.edu/about/copyright/