Keywords

liquid display, partial pixel, stereoscopic images

Abstract

We report the implementation of a liquid crystal-on-silicon, three-dimensional 13-D2 diffractive display based on the partial pixel architecture. The display generates multiple stereoscopic images that are perceived as a static 3-D scene with one-dimensional motion parallax in a manner that is functionally equivalent to a holographic stereogram. The images are created with diffraction gratings formed in a thin liquid crystal layer by fringing electric fields from transparent indium tin oxide interdigitated electrodes. The electrodes are controlled by an external drive signal that permits the 3-D scene to be turned on and off. The display has a contrast ratio of 5.8, which is limited principally by optical scatter caused by extraneous fringing fields. These scatter sources can be readily eliminated. The display reported herein is the first step toward a real-time partial pixel architecture display in which large numbers of dynamic gratings are independently controlled by underlying silicon drive circuitry.

Original Publication Citation

G. P. Nordin, J. H. Kulick, R. G. Lindquist, P. J. Nasiatka, M. W. Jones, M. Friends, S. T. Kowel,"Liquid Crystal-on-Silicon Implementation of the Partial Pixel Three-Dimensional Display Architecture" Appl. Opt. 34(19), pp. 3756-3763 (1995)

Document Type

Peer-Reviewed Article

Publication Date

1995-07-01

Permanent URL

http://hdl.lib.byu.edu/1877/565

Publisher

Optical Society of America

Language

English

College

Ira A. Fulton College of Engineering and Technology

Department

Electrical and Computer Engineering

Share

COinS