Abstract

The increasing urbanization of the greater Salt Lake City area (GSLA) has contributed to the development of an urban canopy over this area. This canopy refers to the effects of building profiles, varying land surface properties and anthropogenic heating on local meteorological conditions including temperature, humidity, and wind velocity. Urban Canopy Models (UCMs) can be used to represent these characteristics on a mesoscale without needing to develop models accounting for effects of individual buildings. One method used to classify urban areas are Local Climate Zones (LCZs), which assign different properties to different types of urban areas. A baseline model that represents current GSLA conditions was developed using a series of sensitivity studies, which focused on the effects of mesh resolution, land surface models, UCMs, anthropogenic heating rates and LCZ urban classifications. The baseline model was validated using measured meteorological data. Four urban growth scenarios were compared to this baseline model to evaluate the effects of future growth on local 2-meter air temperatures, 2-meter relative humidity, and 10-meter wind speed. Results showed increased urban density did not affect daytime temperatures within the GSLA, but did significantly increase local nighttime temperatures. The effects of anthropogenic heating rates were most noticeable during early nighttime hours. Also, increased urbanization affected local temperatures, but did not appear to have "downwind" effects on other areas. A User Guide documenting the modeling approach was developed to support additional studies.

Degree

MS

College and Department

Ira A. Fulton College of Engineering; Mechanical Engineering

Rights

https://lib.byu.edu/about/copyright/

Date Submitted

2023-06-09

Document Type

Thesis

Handle

http://hdl.lib.byu.edu/1877/etd12831

Keywords

urban growth, urban canopy models, local climate zones, land surface models, WRF, Salt Lake City

Language

english

Included in

Engineering Commons

Share

COinS