Abstract

Muscular dystrophies are a heterogeneous group of genetic diseases that involve mutations in genes leading to progressive muscular weakness. Limb-Girdle Muscular Dystrophy 2B (LGMD2B) is a subset of muscular dystrophy caused by mutations in the DYSF gene, which encodes for dysferlin protein and has an incidence of 1/100,000-1/200,000 people, or 1/300 people of Libyan Jewish descent. Since there is no effective treatment that can cure or reverse effects of LGMD2B once diagnosed, our goal is to investigate and develop a protein therapy that mitigates effects of this disease in patients. Galectin-1 (Gal-1) is a small, soluble 14.5 kDa protein with a carbohydrate recognition domain capable of stabilizing the sarcolemma. The exact role that Gal-1 plays in myogenic cells is not fully understood, however, it is known that Gal-1 possesses anti-inflammatory properties and increases the terminal differentiation of committed myogenic cells. Our hypothesis is that Gal-1 treatment increases myogenic potential, improves membrane repair capability, and modulates the immune response in models of LGMD2B by stabilizing muscle integrity, leading to decreased disease manifestation. To test this hypothesis and assess the effect of Gal-1 treatment on myogenesis, anti-inflammatory modulation, and membrane repair, we designed, produced, and purified recombinant human galectin-1 (rHsGal-1) to be used in LGMD2B models. Our in vitro results indicate that after 2-3 days of treatment with 0.11μM rHsGal-1, A/J-/- myotubes enhance expression of myogenic late markers and increase in size and alignment. Additionally, after short-term treatment, rHsGal-1 improves membrane repair capability in a Ca2+ independent manner through an activated carbohydrate recognition domain (CRD) in in vitro and in vivo models of LGMD2B. We give evidence that rHsGal-1 upregulates anti-inflammatory cytokines, increases functional activity, and modulates the canonical NF-κB inflammatory pathway in dysferlin-deficient models by decreasing expression of TAK-1 and the p65 and p50 subunits in vitro and short-term in vivo treatment. Similar effects of the rHsGal-1 treatment were observed in patient-derived dysferlin-deficient human myotubes. Exploratory results show a potential decrease in muscle fat deposition in Bla/J mice. Furthermore, Gal-1 contributes to immune modulation by helping to initiate muscle regeneration by shifting M2 macrophage polarization. Together, our novel discoveries provide direct evidence that Gal-1 is a promising candidate to treat LGMD2B disease pathologies by improving expression of late-stage myogenic markers, improving membrane repair in vitro and short-term in vivo studies, promoting muscle regeneration through immune modulation, and reducing canonical NF-κB inflammation.

Degree

PhD

College and Department

Physical and Mathematical Sciences; Chemistry and Biochemistry

Rights

https://lib.byu.edu/about/copyright/

Date Submitted

2021-12-10

Document Type

Dissertation

Handle

http://hdl.lib.byu.edu/1877/etd12653

Keywords

Muscular Dystrophy, LGMD2B, Galectin-1, Membrane Repair, NF-κB, inflammation, Macrophage polarization

Language

english

Share

COinS