Abstract
Underwater robotic vehicles are used in a variety of environments that would be dangerous for humans. For these vehicles to be successful, they need to be tolerant of a variety of internal and external faults. To be resilient to internal faults, the system must be capable of determining the source of faulty behavior. However many different faults within a robotic vehicle can create identical faulty behavior, which makes the vehicles impossible to diagnose using conventional methods. I propose a novel active diagnosis method for differentiating between faults that would otherwise have identical behavior. I apply this method to a communication system and a power distribution system in a robotic vehicle and show that active diagnosis is successful in diagnosing partially observable faults. An example of an external fault is inter-robot communication in underwater robotics. The primary communication method for underwater vehicles is acoustic communication which relies heavily on line-of-sight tracking and range. This can cause severe packet loss between agents when a vehicle is operating around obstacles. I propose novel path-planning methods for an Autonomous Underwater Vehicle (AUV) that ferries messages between agents. I applied this method to a custom underwater simulator and illustrate how it can be used to preserve at least twice as many packets sent between agents than would be obtained using conventional methods.
Degree
MS
College and Department
Ira A. Fulton College of Engineering and Technology; Electrical and Computer Engineering
Rights
https://lib.byu.edu/about/copyright/
BYU ScholarsArchive Citation
Webb, Devon M., "Fault Tolerant Robotics using Active Diagnosis of Partially Observable Systems and Optimized Path Planning for Underwater Message Ferrying" (2022). Theses and Dissertations. 9758.
https://scholarsarchive.byu.edu/etd/9758
Date Submitted
2022-12-02
Document Type
Thesis
Handle
http://hdl.lib.byu.edu/1877/etd12596
Keywords
active diagnosis, model-based diagnosis, acoustic communication, A*, path planning
Language
english