Abstract

X-ray detector windows must be thin enough to transmit sufficient low-energy x-rays, yet strong enough to withstand up to an atmosphere of differential pressure. Traditional low-energy x-ray windows consist of a support layer and pressure membrane spanning that support. Numerical modeling of several x-ray windows was used to show that both low- and high-energy x-ray transmission can be improved by adding a secondary support structure. Finite element analysis of the x-ray window models showed that the stress from a typical applied load does not exceed the ultimate strength or yield strength of the respective materials. The specific x-ray window models developed in this work may serve as a foundation for improving commercial windows, especially those geared toward low-energy transmission. For local mechanical film testing, microcantilevers were cut in suspended many-layer graphene using a focused ion beam. Multipoint force-deflection mapping with an atomic force microscope was used to record the compliance of the cantilevers. These data were used to estimate the elastic modulus of the film by fitting the compliance at multiple locations along the cantilever to a fixed-free Euler-Bernoulli beam model. This method resulted in a lower uncertainty than is possible from analyzing only a single force-deflection. The breaking strength of the film was also found by deflecting cantilevers until fracture. The average modulus and strength of the many-layer graphene films are 300 GPa and 12 GPa, respectively. The multipoint force-deflection method is well suited to analyze films that are heterogeneous in thickness or wrinkled. Bioimpedance can be measured by applying a known current to the tissue through two (current carrying) electrodes and recording the resulting voltage on two different (pickup) electrodes. Bioimpedance has been used to detect heart rate, respiration rate, blood pressure, and blood glucose. A wrist-based wearable bioimpedance device can measure heart rate by detecting the minute impedance changes caused by the modulation of blood volume in the radial artery. Using finite element analysis, I modeled how electrode position affects sensitivity to pulsatile changes. The highest sensitivity was found to occur when the pickup electrodes were centered over the artery. In this work, we used microfabricated carbon infiltrated-carbon nanotube electrodes to measure the change in contact bioimpedance for dry electrodes, and identical electrodes with a wet electrolyte, on five human subjects in the range of 1 kHz to 100 kHz. We found that the acclimated skin-electrode impedance of the dry electrodes approached that of the wet electrodes, especially for electrodes with larger areas. We also found that the acclimation time does not appear to depend on electrode area or frequency. The skin-electrode impedance after acclimation does depend on electrode area and frequency, decreasing with both. This work shows that if care is taken during the acclimation period, then dry carbon composite electrodes can be used in bioimpedance wearable applications.

Degree

PhD

College and Department

Physical and Mathematical Sciences; Physics and Astronomy

Rights

https://lib.byu.edu/about/copyright/

Date Submitted

2022-08-09

Document Type

Dissertation

Handle

http://hdl.lib.byu.edu/1877/etd12506

Keywords

x-ray window, hierarchical structure, material properties, Young's modulus, tensile strength, bioimpedance, pulsatile sensitivity, skin-electrode impedance, electrode acclimation, skin-electrode interface

Language

english

Share

COinS