Abstract
Given recent advancements in technology and recognizing the evolution of smart manufacturing, the implementation of digital twins for factories and processes is becoming more common and more useful. Additionally, expansion in connectivity, growth in data storage, and the implementation of the Industrial Internet of Things (IIoT) allow for greater opportunities not only with digital twins but closed loop analytics. Discrete Event Simulation (DES) has been used to create digital twins and in some instances fitted with live connections to closely monitor factory operations. However, the benefits of a connected digital twin are not easily quantified. Therefore, a test bed demonstration factory was used, which implements smart technologies, to evaluate the effectiveness of a closed-loop digital twin in identifying and reacting to trends in production. This involves a digital twin of a factory process using DES. Although traditional DES is typically modeled using historical data, a DES system was developed which made use of live data with embedded machine learning to improve predictions. This model had live data updated directly to the DES model without user interaction, creating an adaptive and dynamic model. It was found that this DES with machine learning capabilities typically provided more accurate predictions of future performance and unforeseen near future problems when compared to the predictions of a traditional DES using only historic data
Degree
MS
College and Department
Ira A. Fulton College of Engineering and Technology; Mechanical Engineering
Rights
https://lib.byu.edu/about/copyright/
BYU ScholarsArchive Citation
Eyring, Andrew Stuart, "Analysis of Closed-Loop Digital Twin" (2021). Theses and Dissertations. 9242.
https://scholarsarchive.byu.edu/etd/9242
Date Submitted
2021-08-06
Document Type
Thesis
Handle
http://hdl.lib.byu.edu/1877/etd11880
Keywords
digital twin, discrete event simulation, real-time factory analytics, closed-loop processes, smart manufacturing
Language
english