Abstract

Small unmanned aircraft systems (sUAS) will become a disruptive force on the modern battlefield. In recent years, sUAS size and cost have decreased while their capability has increased. They have forced a reconsideration of the air superiority paradigm held since the First World War. Perhaps their most attractive, and worrisome, feature is the huge range of combat roles that they might fulfill. The presence of sUAS on future battlefields is certain, but the role they will play and their impact on those battlefields are not. This work presents a decision support framework for sUAS deployment in small infantry units. The framework is designed to explore and evaluate multiple sUAS-small-unit deployment concepts' impact on small unit effectiveness in a combat scenario of interest. The framework helps decision makers identify high-level sUAS deployment principles for testing and validation in physical experiments before sUAS are implemented on the battlefield. The decision support framework comprises the following: 1) a definition of the sUAS-small-unit deployment concept design space and combat scenario, 2) an agent-based computer model for exploring sUAS deployment concepts, 3) a set of analysis tools for evaluating sUAS deployment impact on combat effectiveness, and 4) suggestions for synthesizing high-level sUAS deployment principles from the analysis. In this work, the decision support framework for sUAS-small-unit deployment is used to explore and evaluate the impact of deploying an infantry platoon with between one and nine unmanned aerial vehicles (UAV) operating in a reconnaissance role while executing one of several sUAS patrol pattern variants. In a scenario in which a defending platoon uses sUAS to intercept and aid in indirect fires targeting against a platoon of attacking infantry, the sUAS were shown to markedly improve the defending platoon's combat effectiveness. The framework is used to synthesize several key principles for sUAS deployment in the scenario. It shows that, when fewer UAVs are deployed, short-range sUAS patrols improve defender combat effectiveness. Conversely, when more UAVs are deployed, long-range sUAS patrols improve the defenders' ability to target attacking units with indirect fires, increasing the firepower concentrated against opponents. The analysis also shows that increasing the number of deployed UAVs improves the likelihood of defending warfighters surviving the engagement and the defenders' ability to detect and engage the attackers with indirect fires. Finally, the framework shows that sUAS can force alterations in attacker behavior, removing them from combat by non-violent, but highly effective, means.

Degree

MS

College and Department

Ira A. Fulton College of Engineering and Technology; Mechanical Engineering

Rights

https://lib.byu.edu/about/copyright/

Date Submitted

2020-06-17

Document Type

Thesis

Handle

http://hdl.lib.byu.edu/1877/etd11267

Keywords

agent-based modeling, combat simulation, military decision making, small unmanned aircraft systems, UAV system design

Language

english

Included in

Engineering Commons

Share

COinS