Abstract
Values for the heats of mixing were obtained calorimetrically for the systems C2H5OH-C6H12, CH3OH-C6H6 and C2H5OH-C6H6 at 25° over the complete range of composition. Analytical equations which summarize these values are: Benzene (1) - Methanol (2) System ΔHxM = x1x2[628.4 + 365.7(x1-x2) + 521.9(x1-x2)3 + 819.8(x1-x2)4 ] Benzene (1) - Ethanol (2) System ΔHxM = x1x2[748.8 + 534.1(x1-x2) + 265.7(x1-x2)2 + 408.7(x1-x2)3 + 434.1(x1-x2)4 ] Cyclohexane (1) - Ethanol (2) System ΔHxM = x1x2[615.0 + 132.4(x1-x2) + 195.9(x1-x2)2 + 251.5(x1-x2)3 + 521.7(x1-x2)4 ] where xi is the mole fraction of component i. The experimental data were satisfactorily interpreted by a generalized quasi-lattice theory in which each molecule was assigned a definite number of sites in the lattice and three different types of contact points were assigned to the alcohol molecules. The theory predicted interaction energies that were reasonable and consistent for all three systems, indicating that the quasi-lattice theory can be applied to systems in which association of molecules occurs.
Degree
MS
College and Department
Physical and Mathematical Sciences; Chemistry and Biochemistry
Rights
http://lib.byu.edu/about/copyright/
BYU ScholarsArchive Citation
James, Mar Lynn, "Application of the quasi-lattice theory to the heats of mixing of some alcohol-hydrocarbon systems" (1960). Theses and Dissertations. 8239.
https://scholarsarchive.byu.edu/etd/8239
Date Submitted
1960-09-01
Document Type
Thesis
Handle
http://hdl.lib.byu.edu/1877/Letd586
Keywords
Hydrocarbons, Calorimetry
Language
English