Abstract
This thesis provides resources that enable the design of novel and compact mechanical devices by providing terminology, engineering models, and design methods in the fields of developable mechanisms and origami-based engineering.The first part of this work presents engineering models to aid in the design of cylindrical developable mechanisms. These models take into account the added spatial restrictions imposed by the developable surface. Equations are provided for the kinematic analysis of cylindrical developable mechanisms. A new classification for developable mechanisms is also presented (intramobile, extramobile, and transmobile) and two graphical methods are provided for determining this classification for single-DOF planar cylindrical developable mechanisms. Characteristics specific to four-bar cylindrical developable mechanisms are also discussed. The second part addresses a key challenge in origami design: how to achieve stability while maintaining the desired folding motion. The origami stability integration method (OSIM) provides an approach for graphically combining various techniques to achieve stability. This thesis presents improvements and additions to the OSIM that allow it to be applied to many different scenarios. Existing stability techniques are also categorized into four groups based on whether they are intrinsic or extrinsic to the origami pattern and whether they exhibit gradual or non-gradual energy storage behaviors. These categorizations can help designers select appropriate techniques for their application. Four case studies are presented which use the OSIM and the technique categorization to conceptualize stability in origami-based devices.
Degree
MS
College and Department
Ira A. Fulton College of Engineering and Technology; Mechanical Engineering
Rights
http://lib.byu.edu/about/copyright/
BYU ScholarsArchive Citation
Greenwood, Jacob Ryan, "Enabling Compact Devices Through Origami and Developable Mechanisms" (2019). Theses and Dissertations. 7764.
https://scholarsarchive.byu.edu/etd/7764
Date Submitted
2019-12-01
Document Type
Thesis
Handle
http://hdl.lib.byu.edu/1877/etd11044
Keywords
deployable, developable surface, developable mechanism, origami, stability
Language
english