Abstract

The need for electric power across the globe is ever increasing, as is the need to produce electricity in a sustainable method that does not emit CO2 into the atmosphere. A proposed technology for efficiently capturing CO2 while producing electricity is pressurized oxy-combustion (POC). The objective of this work is to design, build, and demonstrate a burner for a 20 atmosphere oxy-coal combustor. Additionally, working engineering drawings for the main pressure vessel and floor plan drawings for the main pressure vessel, exhaust, and fuel feed systems were produced. The POC reactor enables the development of three key POC technologies: a coal dry-feed system, a high pressure burner, and an ash management system. This work focuses on the design of a traditional diffusion flame burner and the design of the main reactor. The burner was designed with the intent to elongate the flame and spread heat flux from the reacting fuel over a longer distance to enable low CO2 recycle rates. This was done by matching the velocities of the fuel and oxidizer in the burner to minimize shear between incoming jets in order to delay the mixing of the coal and oxygen for as long as possible. A spreadsheet model was used to calculate the jet velocities and sizes of holes needed in the burner, comprehensive combustion modeling was outsourced to Reaction Engineering International (REI) to predict the performance of burner designs. Using the guidance of the modeling results, a burner design was selected and assembled. The burner consists of a center tube where the primary fuel will flow, two concentric secondary tubes making an inner and an outer annulus, and eight tertiary lances. The burner and reactor are ready to be tested once issues involving the control system are resolved. Measurements that will be taken once testing begins include: axial gas and wall temperature, radiative heat flux, outlet gas temperature, and ash composition.

Degree

MS

College and Department

Ira A. Fulton College of Engineering and Technology; Mechanical Engineering

Rights

http://lib.byu.edu/about/copyright/

Date Submitted

2019-06-01

Document Type

Thesis

Handle

http://hdl.lib.byu.edu/1877/etd12225

Keywords

burner design, pressurized oxy-coal, combustion, pulverized coal

Language

english

Share

COinS