Abstract
Snowmelt river systems exhibit seasonal fluxes in water chemistry, potentially affecting the water supply of one-sixth of the worlds population. In this study, we examined water chemistry of the upper Provo River, northern Utah, which supplies water to over two million people along the urban Wasatch Front. Seasonal changes in water chemistry were characterized by analyzing discharge and dissolved organic carbon (DOC) with dissolved trace metal and cation concentrations (La, Pb, Cu, Al, Be, Sr and K) over three consecutive water years 20142016, with intensive sampling during snowmelt runoff. To better understand links between metal movement and DOC, we sampled the river in three locations (Soapstone, Woodland, and Hailstone), snowpack, and ephemeral snowmelt channels. Concentrations of La, Pb, Cu, Al, and Be increased with discharge/snowmelt during the 2014, 2015 and 2016 water years. Over 90% of La, Pb, Cu, Al, Be and between 70-90% Sr and K loads occurred during the snowmelt season (April-June). In relation to discharge, concentrations of each element varied between the river sampling sites. At Soapstone, DOC, La, Pb, Cu, Al and Be increased slightly with discharge, but Sr and K remained chemostatic. At Woodland and Hailstone, DOC, La, Pb, Cu, Al and Be had sharp increases with discharge, and Sr and K were diluted. Hysteresis patterns showed that concentrations of DOC, La, Pb, Cu, Al, Be, Sr and K all peaked on the rising limb of the hydrograph at the higher elevation Soapstone site but patterns were variable at the lower elevation Woodland and Hailstone sites. Concentrations for ephemeral channels were significantly higher than river and snow concentrations in La, Pb, Cu and Al, suggesting soil water was a significant source of flushed metals and DOC to the upper Provo River. DOC was highly correlated with La (R2 = 0.94, P = < .0001), Pb (R2 = 0.76, P = < .0023), Cu (R2 = 0.83, P = < .0001), Al (R2 = 0.94, P = < .0001) and Be (R2 = 0.93, P = < .0005), and likely facilitating metal transport. More work is needed to determine the mechanisms of DOC and metal transport, and potential metal complexation. This study has implications for understanding water quality impacts from metal flushing during snowmelt in mountain watersheds.
Degree
MS
College and Department
Physical and Mathematical Sciences; Geological Sciences
Rights
http://lib.byu.edu/about/copyright/
BYU ScholarsArchive Citation
Checketts, Hannah Nicole, "Dissolved Organic Carbon and Dissolved Metal Pulses During Snowmelt Runoff in the Upper Provo River Watershed, Utah, USA" (2017). Theses and Dissertations. 7235.
https://scholarsarchive.byu.edu/etd/7235
Date Submitted
2017-12-01
Document Type
Thesis
Handle
http://hdl.lib.byu.edu/1877/etd9664
Keywords
metals, dissolved organic carbon (DOC), concentration-discharge, snowmelt
Language
english