Abstract

The capabilities of various metal Additive Manufacturing (AM) processes, such as Powder Bed Fusion – Laser (PBF-L) and Direct Energy Deposition (DED) are increasing such that it is becoming ever more common to use them in industrial applications. The ability to print atop a substrate broadens that scope of applications. There is ongoing research regarding the mechanical properties of additively processed materials, but little regarding the interaction between additive material and its substrate. An understanding of the mechanical and performance properties of the AM/substrate interface is imperative. This paper describes a study of the strength properties of AM/substrate interfaces, with respect to torsion and tension, and compares them to their fully wrought and fully additive counterparts. PBF-L and DED are used to produce tensile and torsion test specimens of two different materials, SS316L and M300 steels. This provides sufficient variety in testing for a confident analysis to be made.

Degree

MS

College and Department

Ira A. Fulton College of Engineering and Technology; Technology

Rights

http://lib.byu.edu/about/copyright/

Date Submitted

2018-11-01

Document Type

Thesis

Handle

http://hdl.lib.byu.edu/1877/etd10421

Keywords

additive, AM, PBF-L, DED, substrate, interface, bond, tensile, tension, torsion, hybrid, wrought, SS316L, M300 mechanical properties, John Linn

Language

english

Share

COinS