Abstract
Emergency landing is a critical safety mechanism for aerial vehicles. Commercial aircraft have triply-redundant systems that greatly increase the probability that the pilot will be able to land the aircraft at a designated airfield in the event of an emergency. In general aviation, the chances of always reaching a designated airfield are lower, but the successful pilot might use landmarks and other visual information to safely land in unprepared locations. For small unmanned aircraft systems (sUAS), triply- or even doubly-redundant systems are unlikely due to size, weight, and power constraints. Additionally, there is a growing demand for beyond visual line of sight (BVLOS) operations, where an sUAS operator would be unable to guide the vehicle safely to the ground. This thesis presents a machine vision-based approach to emergency landing for small unmanned aircraft systems. In the event of an emergency, the vehicle uses a pre-compiled database of potential landing sites to select the most accessible location to land based on vehicle health. Because it is impossible to know the current state of any ground environment, a camera is used for real-time visual feedback. Using the recently developed Recursive-RANSAC algorithm, an arbitrary number of moving ground obstacles can be visually detected and tracked. If obstacles are present in the selected ditch site, the emergency landing system chooses a new ditch site to mitigate risk. This system is called Safe2Ditch.
Degree
MS
College and Department
Ira A. Fulton College of Engineering and Technology; Electrical and Computer Engineering
Rights
http://lib.byu.edu/about/copyright/
BYU ScholarsArchive Citation
Lusk, Parker Chase, "Vision-Based Emergency Landing of Small Unmanned Aircraft Systems" (2018). Theses and Dissertations. 7029.
https://scholarsarchive.byu.edu/etd/7029
Date Submitted
2018-11-01
Document Type
Thesis
Handle
http://hdl.lib.byu.edu/1877/etd10408
Keywords
small unmanned aircraft systems, vision-based navigation, emergency landing, autonomous systems, visual target tracking, multiple object tracking, UAS traffic management
Language
english