Abstract

Herbig Ae/Be (HAeBe) stars are intermediate mass (2-10 solar mass) pre-main sequence stars with circumstellar disks. Observing planets within these young disks would greatly aid in understanding planet formation processes and timescales particularly around massive stars. So far, only one planet, HD 100546 b, has been confirmed to orbit a HAeBe star. With over 250 HAeBe stars known, and several observed to have disks with structures thought to be related to planet formation, it seems likely that there are as yet undiscovered planetary companions within the circumstellar disks of some of these young stars. Direct detection of a low-luminosity companion near a star requires high contrast imaging, often with the use of a coronagraph, and the subtraction of the central star's point spread function (PSF). Several processing algorithms have been developed in recent years to improve PSF subtraction and enhance the signal-to-noise of sources close to the star. However, many HAeBe stars were observed via direct imaging before these algorithms came out. We used the PSF subtraction program PynPoint to reprocess archival images of HAeBe stars from the Advanced Camera for Surveys on the Hubble Space Telescope to increase the likelihood of detecting a planet in their disks. We believe we have recovered the known planet around HD 100546 and possibly its candidate second companion. We also detect new candidate sources in the vicinities of HD 141569 and HD 163296. Further observations are needed to confirm the reality of these detections and also establish their association with the host stars.

Degree

MS

College and Department

Physical and Mathematical Sciences; Physics and Astronomy

Rights

http://lib.byu.edu/about/copyright/

Date Submitted

2017-07-01

Document Type

Thesis

Handle

http://hdl.lib.byu.edu/1877/etd9517

Keywords

PSF subtraction, Herbig Ae/Be stars, Hubble ACS data

Language

english

Share

COinS