Abstract

The causative agent of the most devastating honeybee disease, American foulbrood (AFB), is the spore-forming bacterium Paenibacillus larvae. To prevent AFB outbreaks beekeepers prophylactically treat their hives with antibiotics even though it decreases the overall health of uninfected hives. A new treatment for AFB is needed due to recent legislation against using antibiotics, antibiotic resistance developing in P. larvae, and the resilience of P. larvae spores. Bacteriophages, or phages, are an attractive alternative to traditional antibiotics because of their specificity and ability to evolve alongside their target bacterium. In this study, two phage cocktails were developed for the treatment of AFB. The first cocktail was comprised of Brevibacillus laterosporus phages. B. laterosporus is a commensal microbe in most honeybee guts. When treated with B. laterosporus phages, B. laterosporus is induced to produce an antimicrobial toxin to which P. larvae is highly sensitive. Treating AFB infected hives with B. laterosporus phages was able to clear active infections at a rate of 75% as opposed to untreated hives that did not recover. However, B. laterosporus phages did not clear latent P. larvae spores and recovered hives relapsed after treatment. The second cocktail was comprised of P. larvae phages and hives treated with the second cocktail recovered at a rate of 100%, protected 100% of at-risk hives, and treated hives did not relapse with AFB suggesting neutralization of P. larvae spores. A P. larvae phage used in the second cocktail was examined to identify any spore-phage interactions. Results from modified plaque assays, fluorescence from FITC-labeled phages bound to spores, and electron microscopy images all confirm that phages bind to P. larvae spores. Phage therapy for the treatment of AFB is an exciting avenue not only as an alternative to chemical antibiotics, but rather a treatment that can neutralize P. larvae spores.

Degree

MS

College and Department

Life Sciences; Microbiology and Molecular Biology

Rights

http://lib.byu.edu/about/copyright/

Date Submitted

2018-07-01

Document Type

Thesis

Handle

http://hdl.lib.byu.edu/1877/etd10201

Keywords

Paenibacillus larvae, American foulbrood, spores, phage therapy, honeybees, Brevibacillus laterosporus, antimicrobial toxin, bacteriophage, phage-binding

Language

english

Included in

Microbiology Commons

Share

COinS