Abstract

The performance of an inductively coupled plasma mass spectrometer, ICP-MS, depends on the instrument's ability to transport sample ions through the vacuum interface and focus the ions into a well-defined beam that will eventually reach the mass analyzer. In this study two main experiments were performed on the Perkin Elmer NexION 300S, a commercial ICP-MS. First, planar laser-induced fluorescence images were taken of the ion beam in a working instrument downstream from a unique quadrupole ion deflector. The images showed the ability of the instrument design to focus the ions in the ion beam. Second, laser-induced fluorescence was used to characterize ion flow through the vacuum interface. The interface is unique to the NexION ICP-MS in that there are three extraction cones. The effect of a three-cone interface on ideal skimming is discussed.

Degree

MS

College and Department

Physical and Mathematical Sciences; Chemistry and Biochemistry

Rights

http://lib.byu.edu/about/copyright/

Date Submitted

2017-07-01

Document Type

Thesis

Handle

http://hdl.lib.byu.edu/1877/etd9443

Keywords

ICP-MS, ion transport efficiency, laser-induced fluorescence

Language

english

Included in

Chemistry Commons

Share

COinS