Abstract

We have fabricated nanofuses from thin-film, arc-evaporation carbon for use in permanent data storage. Thin film carbon fuses have fewer fabrication barriers and retain the required resistivity and structural stability to work as a data storage medium. Carbon thin films were characterized for their electrical, microstructural, and chemical bonding properties. Annealing the thin-film carbon in an argon environment at 400°C reduced the resistivity from about 4*10-2 Ω cm as deposited down to about 5*10-4 Ω cm, allowing a lower blowing voltage. Nanofuses with widths ranging from 200 nm down to 60 nm were fabricated and tested. They blow with voltages between 2 V and 5.5 V, and the nanofuses remain stable in both a "1" and a "0" state under a constantly applied read voltage of 1 volt for over 90 hours, corresponding to a cumulative time of >1012 reads.

Degree

MS

College and Department

Physical and Mathematical Sciences; Physics and Astronomy

Rights

http://lib.byu.edu/about/copyright/

Date Submitted

2018-04-01

Document Type

Thesis

Handle

http://hdl.lib.byu.edu/1877/etd10001

Keywords

nanofuse, permanent, data storage, fabrication, electron beam lithography, carbon

Language

english

Share

COinS