Abstract

Origami-adapted mechanisms form the basis of an increasing number of engineered systems. As most of these systems require the use of non-paper materials, various methods for accommodating thickness have been developed. These methods have opened new avenues for origami-based design. This work introduces approaches for the design of two new classes of thick-origami systems and demonstrates the approaches in hardware. One type of system, called "conceal-and-reveal,'' is introduced, and a method of designing these mechanisms is developed. Techniques are also developed for designing folding printed circuit boards which are fabricated from a single sheet of material. This enables areas of regional flexibility, leaving other areas stiff. This allows components to be attached to stiff regions and folding to occur at flexible regions. An optimization method is presented to design the geometry of surrogate hinges to aid in monolithic origami-based mechanisms such as flexible PCBs. Examples are shown which demonstrate each of these new techniques.

Degree

MS

College and Department

Ira A. Fulton College of Engineering and Technology; Mechanical Engineering

Rights

http://lib.byu.edu/about/copyright/

Date Submitted

2017-11-01

Document Type

Thesis

Handle

http://hdl.lib.byu.edu/1877/etd9594

Keywords

origami, compliant mechanisms, surrogate hinges

Language

english

Share

COinS