Abstract
This thesis develops a generalized form of Monte Carlo integration called Resampled Importance Sampling. It is based on the importance resampling sample generation technique. Resampled Importance Sampling can lead to significant variance reduction over standard Monte Carlo integration for common rendering problems. We show how to select the importance resampling parameters for near optimal variance reduction. We also combine RIS with stratification and with Multiple Importance Sampling for further variance reduction. We demonstrate the robustness of this technique on the direct lighting problem and achieve up to a 33% variance reduction over standard techniques. We also suggest using RIS as a default BRDF sampling technique.
Degree
MS
College and Department
Physical and Mathematical Sciences; Computer Science
Rights
http://lib.byu.edu/about/copyright/
BYU ScholarsArchive Citation
Talbot, Justin F., "Importance Resampling for Global Illumination" (2005). Theses and Dissertations. 663.
https://scholarsarchive.byu.edu/etd/663
Date Submitted
2005-09-16
Document Type
Thesis
Handle
http://hdl.lib.byu.edu/1877/etd1021
Keywords
computer graphics, global illumination, importance sampling, resampling, importance resampling, sampling importance resampling, resampled importance sampling, direct lighting, variance reduction, stratification, multiple importance sampling
Language
English