Abstract
Radio astronomy, the survey and study of naturally occurring astronomical radio signals, is a challenging field in terms of engineering requirements. The typical astronomical signal of interest is incredibly faint, resulting in very low signal-to-noise ratios (SNRs) on the order of -30 dB or lower. To detect such signals, one must have an uncommonly low and stable receiver noise temperature, high gain through large aperture reflectors, and state-of-the-art signal processing algorithms. One must also be able to mitigate the effects of interference, the presence of which, even if extremely weak, can completely mask the faint astronomical signals of interest. To this end, this work presents the development of and results from a new broadband phased array feed (PAF) named the Focal L-Band Array for the Green Bank Telescope (FLAG). This instrument is able to form multiple simultaneous beams to survey a large patch of sky instantaneously, and has a minimum system noise temperature (Tsys) of 16.83 K. This PAF also has the potential to use spatial filtering techniques to place pattern nulls in the direction of interfering signals through the use of an orthogonal projection. This work will also present an improved method for computing an orthogonal projection operator, which is able to place a spatially broad null in the direction of a moving RFI source. A formal derivation of some detection and estimation theory properties for astronomical radio transients is also presented, which formalization is lacking within the astronomical community. This includes maximum-likelihood detectors and estimators and a Cramér Rao bound (CRB) analysis of astronomical transient parameters.
Degree
PhD
College and Department
Ira A. Fulton College of Engineering and Technology; Electrical and Computer Engineering
Rights
http://lib.byu.edu/about/copyright/
BYU ScholarsArchive Citation
Black, Richard Allen, "Phased-Array Feed Instrumentation and Processing for Astronomical Detection, Interference Mitigation, and Transient Parameter Estimation" (2017). Theses and Dissertations. 6627.
https://scholarsarchive.byu.edu/etd/6627
Date Submitted
2017-12-01
Document Type
Dissertation
Handle
http://hdl.lib.byu.edu/1877/etd9650
Keywords
array systems, radio astronomy, radio frequency interference, pulsars, fast radio bursts, phased array feed
Language
english