Abstract

Improvements to isogeometric blended shells are introduced which blend traditional Reissner-Mindlin shells, and Kirchhoff-Love shells, with an exact interpolation of the shell director increment. A gradient extraction operator is introduced which allows derivatives of basis functions to be exactly expressed as a linear combination of the basis functions themselves. Several benchmarks are investigated and the new blended shell is compared with different shell elements in ABAQUS and NASTRAN. In addition, the effect of different quadrature schemes is included in the comparisons. The new isogeometric blended shell performs comparably in some benchmarks, and even outperforms commercial shell finite elements in some benchmarks. Future improvements to the formulation are discussed.

Degree

MS

College and Department

Ira A. Fulton College of Engineering and Technology; Civil and Environmental Engineering

Rights

http://lib.byu.edu/about/copyright/

Date Submitted

2017-10-01

Document Type

Thesis

Handle

http://hdl.lib.byu.edu/1877/etd9539

Keywords

IGA, Kirchhoff-Love shells, Reissner-Mindlin shells, blended shells

Language

english

Share

COinS