Abstract

In order for a system to learn a model for object recognition, it must have a lot of positive images to learn from. Because of this, datasets of similar objects are built to train the model. These object datasets used for learning models are best when large, diverse and have annotations. But the process of obtaining the images and creating the annotations often times take a long time, and are costly. We use a method that obtains many images of the same objects in different angles very quickly and then reconstructs those images into a 3D model. We then use the 3D reconstruction of these images of an object to connect information about the different images of the same object together. We use that information to annotate all of the images taken very quickly and cheaply. These annotated images are then used to train the model.

Degree

MS

College and Department

Physical and Mathematical Sciences; Computer Science

Rights

http://lib.byu.edu/about/copyright/

Date Submitted

2017-06-01

Document Type

Thesis

Handle

http://hdl.lib.byu.edu/1877/etd9372

Keywords

Multiview segmentation, 3D Annotation, 3D Modeling

Language

english

Share

COinS